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Abstract— Efficient beams on two-parameter elastic foundation finite elements have recently been
developed. The stiffness matrix and nodal load vector of these elements have been derived on the
basis of the exact displacement function obtained from the solution of the governing ditferential
equation. Most of the existing elements are. however, either limited to certain combinations of beam
and foundation parameters, or provide only the solution of the homogeneous form of the governing
equation. In this paper a new finite element is derived which eliminates these limitations. The
stiffness matrix. nodal load vector and shape function of the clement are derived using the differential
equation of a beam on a two-parameter elastic foundation. The complete solution of the equation
corresponding to the most common types of load is also presented. This permits the determination
of the deflections and internal forces anywhere along a simple or continuous beam on two-parameter

foundations.

NOTATION

The following symbols are used in this paper:
a defined by eqn (29f)
A-A, constants of integration
{A} matrix containing 4,-A,
h defined by egn (29¢)
B width of beam
¢ defined by egqn (29h)
¢y ¢y constants of integration

defined by eqn (29g)
D, D, beam element end displacement
D, D, beam clement end rotation
{D} matrix containing degrees of freedom DD,
¢ base of natural logarithm
E beam clement elastic modulus
{E} matrix relating displacements {D) to constants { A}
E, Young’s modulus of foundation
{F} matrix of beam end forces and moments
{G} inverse of matrix {E}
{H} matrix relating constants {A4! to end forces {F}
I/ beam element moment of inertia
k first parameter of elastic foundation or Winkler foundation modulus
k, second parameter of elastic foundation
k, clements of stiffness matrix
kg a parameter of the shear layer
ky reaction moment per unit length per unit rotation
L beam clement length
m.n coefficients of lincar function defining the particular solution of eqn (1)
ni(x) applicd distributed moment
M(x) bending moment at a section & distance x from the beam end
M, applied concentrated moment
{N} matrix of exact shape functions of beam clement
{P} matrix of equivalent nodal loads
p(x) clastic foundation pressure
P applied concentrated load
q(x) applicd distributed load
Q axial load
r cosh zL
R cosh fiL
R, sinf,L
[S] beam clement stiffness matrix
t sinh 2L
T sinh gL
T constant tension in an elastic membrane connecting top ends of springs
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T, sinh 8,L

ur coefficients of linear function defining ¢(x)

F(x) generalized vertical shear at a section a distance x from the beam end
b} generahized normal shear at a section a distance x from the beam end
w beam lateral displacement

W defined by eqn (29a)

Wieng tree end vertical displacement

Wy, solution of homogencous form of eqn (D

w, particular solution of eqn (1)

w, beum displacement due to nodal displacements and rotations

W, displacement due to applied foads in a fixed-end beam

distance along the beam axis

) distance from the beam end to where ¢{.v) begins
distance from the beam end to where ¢(x) ends
defined by eqn (29b)

defined by eqn (29¢)

defined by eqn (29d)

’ /*zfi'
: f i

N~ im = = =
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v, Poisson’s ratio of foundation
it constant expressing rate at which vertical detormation of foundation decays with depth
) 2+ f8
i x i
iy 2aft
i Bredeip
iy 1+ daft’
i EaR H
PN 2af,
i Ny N
i TARET
It ky > SEl
b, cosh xx cosh fix
¢, cosh xv sinh fix
' sinh xzv cosh fixy
b, sinh 2y sinh fix
It ky < (HKEL
P, cosh zxcos fi,x
¢, cosh zvsin fi)x
'R sinh zvceos fiv
b, sinh xxsin ff v,

INTRODUCTION

Recently, beams on two-parameter clastic foundation have reccived considerable attention
(Zhaohua and Cook, 1986 ; Eisenberger and Clastornik, 1987 ; Chiwanga and Valsangkar,
1988 : Valsangkar and Pradhanang, 1988 : Karmanlidis and Prakash, 1989). Zhaohua and
Cook (1986) discussed the different types of clastic foundation models and developed the
stiffness matrix and nodal load vector of a beam on a two-parameter elastic foundation
finite element. The two-parameter foundations that this element can model include the
Filonenko-Borodich, Pasternak. Generalized, Vlasov and Winkler models. They derived
the stiffness matrix of the element in two ways: first, based on the cubic displacement
function used for ordinary beams without elastic foundation ; secondly, based on the exact
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displacement function obtained from the solution of the differential equation governing the
behavior of beams on two-parameter foundations. They concluded that while in some cases
80 elements of the type based on the cubic function may be needed to obtain the converged
solution of the problem, the same problem can be solved using one or two elements of the
kind based on the exact displacement function. Hence. the use of the latter element leads
to a noticeable amount of saving in computer resources and human effort when solving
problems of beams on two-parameter elastic foundations.

Unfortunately. their solution was limited to certain combinations of beam and foun-
dation stiffnesses. Chiwanga and Valsangkar (1988) developed a beam element on a two-
parameter elastic foundation and gave its nodal load vector. but their solution was also
limited by the same constraint. Eisenberger and Clastornik (1987) solved the problem of a
beam on a variable two-parameter elastic foundation and obtained the solution of the
governing differential equation by means of an infinite polynomial series. Their solution is
again primarily concerned with the homogenous form of the equation. The accuracy of this
solution naturally depends upon the number of terms used in the series. Although some
guidelines are provided with respect to the choice of this number (the authors used 80-110
terms to obtain the converged solution for a cantilever beam loaded at its tip), the required
number of terms will obviously be dependent upon the beam loading and boundary
conditions. Furthermore, in the case of constant foundation parameters. 2 non-serics exact
solution is simpler because it will have only four trigonometric or hyperbolic terms for the
homogencous part plus two to three terms for the particular solution corresponding to
most common types of loads. Valsangkar and Pradhanang (1988) provided the well-known
solution for the homogencous form of the differential equation governing the dynamic
behaviour of beam-columns on a two-parameter foundation for different foundation par-
ameters and stitTness combinations. They did not. however, present any stiffness matrices
or the complete solution of the problem for the nonhomogencous form of the equation
corresponding to the usual load combinations. Karmanlidis and Prakash (1989) gave
transfer and stitfness matrices for all the possible cases of beam-columns on a two-parameter
clastic toundation but did not discuss the procedures for obtaining the equivalent joint
loads, the particular solution of the problem, or the methods for calculating the final
displacements, shearing forees and bending moments. These procedures are necessary to
obtain a complete solution of the problem.

In this paper, a beam element is presented which permits the solution of beums on any
type of constant two-parameter elastic foundation. The explicit form, completeness and
simplicity of the present solution arc its principal advantages. The stiffness matrix, shape
functions and nodal load vector corresponding to the most important types of loads are
given in explicit form. The complcte solution of the governing differential equation is
presented in a form which can casily be implemented in the ordinary frame analysis
computer programs based on the stiffness method. The authors believe that provision of
stiffness matrices alone. as in most of the references cited carlier, often does not provide
the necessary information in a form which would permit the user to exploit, without
extensive effort, the advantages of an exact displacement function versus a solution based
on cubic polynomial shape functions. The reason for this is that exact stiffness matrices
should be accompanicd by the exact nodal load vector and the exact particular solution
corresponding to practical loading cases in order to realize the above advantages. Finally,
it should be stated that this paper is not intended to cover the problem of beam-columns
on clastic foundations, as presented by Karmanlidis and Prakash (1989), although the
procedure presented here can be extended, in conjunction with the solution presented by
the above authors, to deal with the problem of beum-columns on an elastic foundation.

GOVERNING DIFFERENTIAL EQUATION

The equation governing the behavior of beams on a two-parameter elastic foundation
is given by
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q(x)

Elastic Foundation

Fig. 1. Typical beam on two-parameter clastic foundation.

. “‘-
EIF—k.a;Z—+kn'=q(x) )

where w is the displacement function. £/ is the beam flexural rigidity, q(x) is the applied
loading function. k is the first foundation parameter, usually referred to as the Winkler
foundation modulus. and &, is the second foundation parameter which has different defi-
nitions, depending on the two-parameter foundation model being utilized ; see Fig. 1. For
the most common types of foundation models, &, is given as follows.

Filonenko—Borodich founduation

ki =T, (22)

where T, = constant tension in an elastic membrane connecting the top ends of Winkler-
type springs.

Pasternak foundation

ky =k (2b)

where k; = a paramcter of the shear layer.

This model is based on the assumption that there is shear interaction between the
springs, and the top ends of the springs are connected to an incompressible layer which
resists only transverse shear deformations.

Generalized foundation

ki =ky (20)

where k, = reaction moment per unit length per unit rotation.

This model assumes that at the point of contact between beam and foundation there
is not only pressure but also moments, These moments are assumed to be proportional to
the angle of rotation and the second parameter is the constant of proportionality.

Viasov foundation

Here the foundation is treated as a semi-infinite medium and simplifying assumptions
are made to obtain the second parameter in terms of clastic constants and the dimensions
of the beam and the foundation:

E,
ky = —

T a(l+v) @d)

=1

where

E, = Young's modulus of foundation
v, = Poisson’s ratio of foundation
B = width of beam
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u = constant expressing the rate at which vertical deformation of foundation decays
with depth (Scott, 1981).

k and k&, can be used to calculate the foundation pressure. p(x).

d*w
p(Y) =kW—-kla—:‘j. (3)
The solution of eqn (1) may be written as
W= Wy +w, “)

where wy, is the solution of the homogeneous form of the equation and w, is a particular
integral corresponding to ¢(x). When dealing with the derivation of the stiffness matrix, we
need only consider the homogeneous solution

W-—-Wh=A|¢|+A1¢:+A3¢3+A4¢4 (5)

where 4,-A 4 are constants, and ¢ ,—¢, are four linearly independent functions whose exact
form depends on the relative magnitude of EI. & and k,. Since the latter quantitics are
rigidity parameters of beam and foundation, they are all non-negative. Thus, there are
only three possible combinations of the parameters that need to be considered, i.c. &,
larger than, equal to or smaller than ﬂkEl. Fork, > \/4kEl. ¢~ are listed below :

¢, = cosh ax cosh fix (6a)
¢, = cosh ax sinh fix (6b)
¢, = sinh ax cosh fix (6¢)
¢, = sinh ax sinh fix (6d)

where a and ff are as follows :

k, k
=g * agi (7a)

_ [k /'L
B=\/aEi Ve (70)

Generally, £, < \/4/(EI is satistied by most physical problems, as has been noted by
others (Scott, 1981 ; Zhaohua and Cook, 1986). Therefore, most of the existing beam on
two-parameter foundation finite elements deal with this case only but cannot be applied
tok, > \/4kEI. However, when performing nonlinear analysis, in which the flexural rigidity
of the beam and the soil parameters can vary widely, depending on the level of stress, the
full solution of the differential equation would be needed to solve the problem. The objective
of this paper is to develop an element that would eliminate the difficulties that may arise
ducto k, > JA4KEl _ _

When k, < \/kEI, ¢,-¢, are as follows:

¢, = cosh ax cos I, x (8a)
¢ = cosh axsin f,x (8b)

¢y = sinh ax cos f§,x (8c)
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¢4 = sinh x2xsin g, x (8d)

ff & 9
4EI ~ SEI ®)

[t is possible to get the exact solution for &, = \/4kEI. but in practice accurate results
can be obtained by just increasing k, by a very small amount and then using the solution

————

for k, > /4kEI. For this reason. the exact solution for &, = \/4kEI is not presented here.
In the ensuing developments, the formulation for &, > /4kEI is presented in detail. The
formulation for k, < \/4kEI can be similarly performed. and is given in Appendix B for

the sake of completeness.
For convenience, eqn (5) may be written in matrix notation

where B, is given by

w={p} A} (10)

where matrices {¢} and [} contain ¢ —¢p, and A A ,. respectively, and the superscript T
denotes the transpose of a matrix. We shall use eqn (10) to develop the exact shape functions,
stiffness matrix and nodal load vector of a beam on a two-parameter elastic foundation
finite element.

EXACT SHAPE FUNCTIONS

Consider the beam clement in Fig. 2, which has a length L and four degrees of
freedom -~ Dy to Dy at the two ends or nodes. Note that D, and D are end displacements
while D, and D, are end rotations. Associated with the generalized nodal displacements,
1D}, are the generalized nodal forcees, {F}, which consist of shearing forees and bending
moments. {0} can be written as

{I) } r = {(“l)\‘ul)v (wl)\‘—l)‘ ("‘),\-Lv (W')\'-l.} (I l)

where the prime denotes the derivative of w with respect to x.
Substituting for w and its derivative from egn (10) into eqn (i) results in:

D, ] 0 0 0 A,
D, _ 0 B 2 0 A, (12)
D‘ Rr TI‘ R’ T’ A]
D, (fTr+a2Rt) (fRr+aTt) (fTi+2Rr) (fiRt+2Tr) A,
or
D} = [E]{A} (13)

where r = cosh xL, R = cosh fiL, t = sinh 2L, T = sinh L and [£] is the 4 x 4 matrix in

C: % Q.5
—V
q-f . %5

j Y
I

Fig. 2. Element end displacements and forces.
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eqn (12). It should be mentioned that when T is used as superscript it means transpose,
otherwise it always denotes sinh L. Equation (13) can be solved for the unknown constants
(]

(4 = (E)""(D)
or

4} =[G]D}. (14)

The matrix [G] = [E] ™' is explicitly given in Appendix A. Substituting for {4} from
eqn (14) into eqn (10) yields

w= (" [G]{D}. (15)
or
w=!NT{D} (16)
where
V=1 G (17)

The vector { N} is a 4 x | matrix whose elements are the exact shape functions of the beam
on a two-parameter elastic foundation finite clement. 1t may be recalled that cach shape
function describes the equation of the clastic curve when the beam is given a unit dis-
placement in the direction of one of the degrees of freedom while the remaining degrees of
frecdom are set equal to zero.

A typical shape function corresponding to D, = 1, D, = D, = D, = 0, is given by

N, = Gy, cosh ax cosh ffx + Gy, cosh xv sinh fix+ G, sinh 2y cosh fix

+ Gy, sinh 2xsinh fix (18)

where the G,; are elements of [G']. This is in contrast to the corresponding shape function
of it conventional beam, i.e. a beam without elastic foundation, which is given by

ELEMENT STIFFNESS MATRIX
The element stiffness matrix, [S]. which relates the nodal forces to the nodal dis-
placements, can be obtained from the minimization of strain energy functional U:

cU

[S]= (“{ D} (19)
where

ol (A A . (A
U= % J; W dy+4 ,;- J: wi dy+ l%l J: ww' d. (20)

)

) <

Substituting for w and its derivatives from eqn (15), [$] can be written as
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L ~L
{N"}“z\"’}dx+kf {N,’»T:N}dx-fk,J (NITON) di Qen

i} 1}

L

[51=£1f

[}]

where |.V] is given by eqn (17) and the first and second derivatives of [V}, namely {N’}
and [N}, are given by
=GN (22a)
W =[G] e} (22b)
Hence the derivatives of shape functions are directly related to the derivatives of ¢.
The latter derivatives are explicitly given in Appendix A.

Substituting for { ¥} and its derivatives from eqns (17). (22a) and (22b) into eqn (21)
and performing the required integrations yields the stiffness matrix in explicit form:

Sll SI‘ Sl,‘ SIJ

i Su Su ,
= 23
(] 5. Se 23
Symm. Sis
where
o (B RT
Su=3Sn= 2[2‘1[1(1‘—”') (/”_*;¥ i )] (231\)
.‘+ N , ITZ "‘l:R:
Si==-Su= —ZEI[(Z ) ﬁ') +1_/{(" : )] (23b)
2 A
. S (BRTU+aT
Sii= 21;'1[1(/;--a~)(/ A ')] (23¢)
3 A
* \ . > + ‘l"
Su=-=-5,= —2[;1[1(/!'-—1')<A>:| (23d)
frt —aRT
So=8u= 21:'1[1 (I " ,A,m - )] (23¢)

Sii= 251[%"”2” R’)] 236)

I;lll_ll'rl
="

The remaining clements are given by the symmetry of the stiffness matrix.

in which

NODAL LOAD VECTOR

The nodal load vector, { P}, corresponding to a loading function, ¢(x). acting from
point x, to x, of the span L, Fig. 3, is given by

P =j (N 1g(y dx. 9

For a distributed moment m(x) acting from x, to x,
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Equivalent nodal loads

X

- n _!

Fig. 3. Equivalent nodal loads P,-P, corresponding to the applied loads.

P} = f {NYm(x) dx. (25)

We shall use the above equations to develop the nodal load vector for the most common
types of loading as illustrated in Fig. 3.

Concentrated load Pyat x = &
For this case eqn (22) reduces to

(P} = PN} ...

Substituting for {N} from ¢qn (17) leads to:

£y
P, :
p. | = PolGlHd)eer (26)

3}

P,

Concentrated moment My at x = n
Similar to the concentrated load case, the nodal load vector is given by

or

= MG b}, 27)

Trapezoidal load acting from x, to X,
The trapezoidal load shown in Fig. 3 has magnitude q, at x, and magnitude ¢, at x,.
The loading function is given by

q(x) = ux+v

where
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=‘I:-‘h

Xa—X,

_ it —40x
Xp—x,

v

The corresponding nodal load vector is

{P} = '[:: {N}ux+r)dx.

Substituting for {N} from eqn (17),

(P} = [G]T(u_[':x{qb} d.\~+cr{¢:» dx).

Carrying out the integration gives

P, W+ X+a+b
Py _ G| ~ Y+Z+c—d
P, Y+Z+d+c
P4 _ l’V+4Y+(l—h

u
W = ,(cosh yx, —cosh yx; +7x; sinh yx; —yx, sinh yx,)

2y

X = 2% (cosh ix, —cosh 4ixs+ Ax, sinh Ax; — ix, sinh Ax,)

Z = f:% (sinh Ax, —sinh Ax, + Ax; cosh Ax; —ix, cosh Ax,)

u
Y=s5

v, .
b= g(smh vX,—sinh yx,)

v L.
a= 2—/,:(smh /x,—sinh ix))
v
d= 3; (cosh yx, —~cosh yx,)

v . .
c= 53 (cosh 2x, ~cosh Ax,)
i=

7=

5 (sinh yx, ~sinh yx,+7yx, cosh yx, —yx, cosh yx,)

a+f,
a—fi.

Uniformly distributed moment acting from x, to x,
According to eqn (24), the nodal loads for a uniform momemt m, acting from point

X, to x;is

(28)

(29)

(292)

(29b)

(29¢)

(29d)

(29¢)

(296)

(29g)

(29h)
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(P} =[(GT" J (¢} mq dx
which. after some manipulations, yields
P, O1(x2)—d(x))
Py _ | $:0x2)—d:(xy) 30
Py m[C] d3(x2) —ds(x)) (30)
Py @i(x2) —Palxy)

and where ¢ ¢, are given by eqn (6).

DEFLECTION, BENDING MOMENT AND SHEAR

In order to obtain the displacement, shearing force and bending moment at any point
along a beam, we must use the complete displacement function, w, of the beam, consisting
of the displacements w, caused by nodal displacements { D}, plus the displacements w,
caused by the applied loads acting on the same beam with its ends clamped. This can be
written as

w=w;+w, 31
where according to eqn (15)
w, = {¢}"[G]{D} (32a)
and
wy= i+ +edsFeditw, (32b)

with w, being a particular integral corresponding to the transverse loading function ¢(x)
and ¢, -¢, being constants of integration. It can be shown that

1 k U (ki
Wo = [ q(x)+ E;— q"(x)— i (Il' +kL)q"'(x) SRR

where the primes indicate derivatives of g(x) with respect to x. Equations (31), 32(a) and
32(b) will be used to develop explicit expressions for displacements, shear and bending
moment corresponding to some common types of loading.

Linearly varyving load
If we restrict our solution to the common case of a linearly varying load, then

I
W, = i (mx+n)
where m and # are constants defining the loading function. Therefore,
l
Wy = {¢}T{C} + E(mx‘{”n). (33)

The constants {c} can be solved using the boundary conditions of a beam clamped at both
ends. Insertion of these conditions in eqn (33) leads to
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[Eic}+{J} =0

where

n
1 m
(Jl = _
YT mL+n
m

and matrix [E] is the same as in eqn (13). Therefore.

(6 = — 61}
or

i = =[G/} (39
Considering eqns (31)-(34), we can write
. l
w={p'[GIID}-I)+ . (mx 4m). (35

Equation (34) gives the complete displacement function which could be used to obtain the
displacement at any point along the beam. The shear and bending moment are given by
successive differentiation of this equation.

V(x) = —Elw"+kw (36a)
M(x) = —Elw". (36b)

The shear defined by eqn 36(a) is the vertical sheur. The normal shear, acting normal to
the deflection line, is

V,(x) = —Elw". (37)

Equations (35) and (36) can be written in matrix form:

. k

V(x) = (=EN¢" " +k (¢ )VUGKID} = () + Z-!' m (38a)
M(x) = —EI$"}"[GI({D} - {J}) (38b)
Va(x) = —EN$"}IGI(D} - {/}))- (39

Once again the derivatives of {¢} are needed in eqns (38) and (39) which can be
obtained from Appendix A. It must be mentioned that the vector {D} contains the known
values of nodal displacements obtained from the analysis.
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b

Fig. 4. (a) Beam on two-parameter clastic foundation subjected to concentrated load and moment ;
(b) beam in (a) idealized as two clements.

Concentrated load Py at x = ¢

In this case the deflected shape, w,, will hive two equations, depending on whether
x < &orx 2= & sce Fig. 4(a). To obtain these equations, we treat the beam as an assemblage
of two members, | and 1, of length & and (L - &) with two degrees of freedom Dy and D,
see Fig. 4(b). We set up the force displacement relationship corresponding to these two

degrees of freedom, whencee
ki ke\ (D)) 1)
ky kaJ\D:/ 0

D, Py /\'::)
<DJ)‘k..kn—k.zk:.<—k.z @0

ko= 8%W+SY,
kyy=Sh+St
ky =S8'+5Y,
ki = SY+ 8%

or

where

In the above the superscripts [ and 11 denote members [ and 11, and the §,; are the stiffness
cocflicients of cach beam clement. These can be calculated using the cxpressions in eqn
(21), with the provision that L be repliced by & for member I and by (L —¢) for member
IL

Knowing D, and D. from ¢qn (40), for x < ¢

W, = D|1VJ+D:N4 (4“'1)
while for x = &

"':=D|N|+D:N2. (4Ib)

When evaluating ¥, and ¥,, we must substitute for x, (v —¢), or we could use x, provided
x is measured from the point of application of the point load.
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Concentrated moment M, at x = n
The procedure in this case would be similar to the concentrated load case ; accordingly,

(D')_“ M (“’f:x> s
D —kllk::—klzk“ ki, 42)

where all the symbols are as defined earlier. In evaluating k. k»,. etc. ¢ must be replaced
by 1.

The expressions for w, are the same as those given in eqns (41a) and (41b). except
again ¢ must be replaced by 5. Knowing the expressions for w,, we could proceed to
evaluate the shear force and bending moment using eqns (38a) and (38b). respectively.

NUMERICAL TESTS

To check the accuracy and efticiency of the proposed formulation, several examples
were solved. Firstly, a simply supported beam on a two-parameter foundation subjected to
a constant line foad was analyzed using only one ¢lement. The deflections. shearing forces
and bending moments were compared with the exact solution given by Hetényi (1961). All
the results from the two solutions matched exactly. Subsequently, two beams with more
complicated loads were analyzed to demonstrate the cfficiency of the formulation. These
are described in the following example problems.

Example |

A free free beam on a two-parameter clastic foundation, shown in Fig. 5(a). was
analyzed exactly by Harr er al. (1969) and by Chiwanga and Valsangkar (1988). They took
the foundation parameters and beam rigidity such that k| < \/4l\' E1 and assumed that the
foundation does not extend beyond the edges of the beam. The same problem is solved here
except that the value of & is changed such that &, > \/4k E1. Two cases are considered in
the present analysis. Firstly, it is assumed that the foundation terminates at the beam ends ;
sccondly, the foundation is assumed to be of infinite extent. The results of the first case
were compared with those obtained by the foregoing authors. According to the method
described here, only one element is required for an exact analysis. Note that for the partial
trapezodial load in Fig, 5(a). the particular solution of the governing differential equation
is obtained for the loaded and unloaded portions and then the requirements of detlection
and slope continuity at their junctures are used to obtain the constants of integration.

The beam louding, dimensions and material properties are shown in Fig. 5(a). The
deflected shape, normal shear and bending moment diagrams are shown in Figs 5(b), 5(c)
and 5(d). respectively. On the same diagrams results given by Chiwanga and Valsangkar
are shown for comparison. We notice that the maximum deflection and the maximum
bending moment for the first case are approximately 40% less than their corresponding
values but the sheur forces do not change much.

If the foundation is assumed to be of infinite extent, then due to the deformations in
the part of the foundation beyond the edges of the beam. the shear at the free ends may
not generally be zero. The magnitude of this shear force is (\/kk.)wrcm,. where Wiy is the
vertical displacement at the free end (Viasov and LeontUev, 1966). This is equivalent to
having a lincar spring of stifTness \/kk, at the free ends. Thus, we can use this simple device
of a spring to account for the effect of infinite foundation beyond the beam cdges. In the
computer program employed in this paper. the proper boundary condition for the frec end
is automatically accounted for. depending on the specified type foundation. The results for
this case are also shown in Figs 5(b)~(d). It can be seen that with the introduction of an
infinite foundation the maximum displacement reduces by 50%. but the shear force and
bending moment do not change to such a large extent.
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Example 2

The continuous beam on two-parameter foundation in Fig. 6(a) is solved using the
proposed element. The analysis is performed using three elements and three global degrees
of freedom, namely rotations at B, C and D, i.e. D,. D, and D;. The stiffness matrix of a
typical element is calculated using eqn (23).
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49805 62662 —341.54  514.45
s _ 2131.05 —51445  659.46
1S )eemen: = Symm. 498.05 —626.62

2131.05

Using
(51D} = (P}.

we solve for the joint displacements

D, 4262.1 659.46 0.0 \-! 14.09
D,|= 4262.1 659.46 —27.90
D, Symm. 2131.05 —19.27
which yields
D, 4.249
D,)=|—-6.096]x10""
D, ~7.157

Using the displacements {D}. in conjunction with cqns (37) and (40), the deflected
shape, vertical shear and bending moment diagrams of the beam are determined. These are
shown in Figs 6(b)-(d), respectively.

SUMMARY AND CONCLUSIONS

An efficicnt beam on a two-paramcter elastic foundation was derived using the exact
displacement function obtained from the solution of the governing differential equation.
This element complements existing clements of this kind. The stiffness matrix and nodal
load vector of the element were derived cxplicitly, and the detailed equations for the
determination of the deflected shape, shearing foree, and bending moment were developed.
The accuracy and efficiency of the formulation were verified by means of numerical
examples. Based on the above, it is concluded that:

(1) Existing beam on two-parameter elustic foundation finite elements cannot be
used for certain combinations of foundation parameters and beam rigidity in a
convenient and simple manner, to obtain the complete solution of the problem.

(2) The derivation of explicit element stiffness matrix and nodal load vector makes
the proposed element efficient and obviates the need for dividing the beam into
many elements between the points of loading.

(3) The magnitude of deflections and bending moments are significantly affected by
the value of k|, and by the extent of the foundation if the beam end is free.
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APPENDIX A: ELEMENTS OF THE MATRIX [G} AND THE DERIVATIVES OF {¢}

G, =1
G|:=G”=G|,‘=0

Gy = z(l’ﬁz_ﬁl)

s\ &
o L
=R

2 fRi+2Tr
G“=’B(-T_>

o]
it

/£r1+1RT>
(=5
G T’
T T\ A

IRt +21r
e ()

Tt

Gy = = =-

. =R
Gu=al 5

Gy = 1 (aRT—ﬂ_r_l)

A

. =g T
G (A>

Go. o L[BRE-2Tr
Ty A

B =T

The remaining symbols are the sume as in the main text.
Derivatives of [} :

and

fid:+2d,
o ,"bl+1¢a
fdi+2d,
Bdi+2d,

}':¢‘+;'l¢|
Ayt ib;
j':‘#:""’:v‘b\
i+ id,

=
Ry
i

.-
A
2
-
]
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Asb:+iid,
(¢! = Ayd +id,
W . .
Ayda+isd,
Ayd3+isd:
where
i =2+
Ay =228

iy =B +32°8
iy =2 +3af°.

Refer to eqn (6) in the main text for the meaning of ¢ ,-¢..

APPENDIX B: FORMULATION FOR k&, < /4kEl

Elements of the matrix [G]:
G, =1
G:=6Gi=G,,=0

. /I,rt+rzR.T_,
"-'"‘i:‘.’('*"‘A. )

G x (/l,R,H—zT.r)
PR ALRALSR N
Yom A,

Gos 2 "fll
T T\ A
G ow [ BrrrraR T,
1y = Al

. a (T
Gy = ‘ITl(E)

Ryt+2Tr
G_”=(lll lAl I )

T:r:-f- R.‘l!
Gor = 1(_7__.)

-1 JR.'I',—/i,rl)
Gy = —— | =12t m
w5 (M

al+ i T
Gur= a.”(r.)

Gum - ) (M=)
where
R, =sinfi,L
T, =sinfi,L

_ (B -2'T}
A,—( p )

The remaining symbols are the same as in the main text.
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Derivatives of | ¢} :

—Bid:+2é;
B\ +2d,
-Bidi+2d,
Bo,+2¢:

— i+ i,
Aoy +Ash,
— A2t AsPy
Aopr+Asd,

~ Ao+ Asd,
Ar + AP,

—ia+ Ay,
Ay +igd:

where
Ay =2"—f;
Ae = 228,
Ay = =B +32°B,

Ay = 2 =333

Refer to eqn (8) in the main text for the meaning of ¢,-¢,.

Element stiffness matrix:
: N 1+aR, T
Sy=S,= 251[1(1-”3;)(’_"_’_33_'_')]
]

KRB r’Ti+1R}
Spp= =Sy = —21;/[ — —a‘/f.(—h'&__i

i
Sin= —ZEI[zcﬂ;‘w,(h&':_iZz)]
A,
-
Sie= =S =2E1 1(/‘f+a3)(rl—l)]
L A,

S =8, =2E1 1(/{—!:L—Aa~ﬁ~'-£-'>}

3 al\r=f,R ¢t
—az ——-—Xl«——~—- .

Formulae of nodal load vectors for all cases, except trupezodial loading, are the same as those given in the
matin text. The nodal load vector for trapezoidal loading can be evaluated by integrating eqn (28). It is to be noted
that for evaluating nodal load vectors, the appropriate [G] and {¢} matrices must be used.

S, =2E

~




